What is 5G? [And how it will change wireless networking ]

5g wireless technology is just about ready for prime time, overcoming backhaul and backward-compatibility issues, and promising the possibility of all-mobile networking through enhanced throughput.

Source: Craig Mathias, Principal, Network World

The next step in the evolution of wireless WAN communications – 5G  networks- is about to hit the front pages, and for good reason: it will complete the evolution of cellular from wireline augmentation to wireline replacement, and strategically from mobile-first to mobile-only.

So it’s not too early to start least basic planning to understanding how 5G will fit into and benefit IT plans across organizations of all sizes, industries and missions.

5G will of course provide end-users with the additional throughput, capacity, and other elements to address the continuing and dramatic growth in geographic availability, user base, range of subscriber devices, demand for capacity, and application requirements, but will also enable service providers to benefit from new opportunities in overall strategy, service offerings and broadened marketplace presence.

A look at the key features you can expect in 5G wireless.

This article explores the technologies and market drivers behind 5G, with an emphasis on what 5G means to enterprise and organizational IT.

While 5G remains an imprecise term today, key objectives for the development of the advances required have become clear. These are as follows:

5g speeds

As is the case with Wi-Fi, major advances in cellular are first and foremost defined by new upper-bound throughput numbers. The magic number here for 5G is in fact a floor of 1 Gbps, with numbers as high as 10 Gbps mentioned by some. However, and again as is the case with Wi-Fi, it’s important to think more in terms of overall individual-cell and system-wide capacity. We believe, then, that per-user throughput of 50 Mbps is a more reasonable – but clearly still remarkable – working assumption, with up to 300 Mbps peak throughput realized in some deployments over the next five years. The possibility of reaching higher throughput than that exceeds our planning horizon, but such is, well, possible.

Reduced latency

Perhaps even more important than throughput, though, is a reduction in the round-trip time for each packet. Reducing latency is important for voice, which will most certainly be all-IP in 5G implementations, video, and, again, in improving overall capacity. The over-the-air latency goal for 5G is less than 10ms, with 1ms possible in some defined classes of service.

5g network management and OSS

Operators are always seeking to reduce overhead and operating expense, so enhancements to both system management and operational support systems (OSS) yielding improvements in reliability, availability, serviceability, resilience, consistency, analytics capabilities, and operational efficiency, are all expected. The benefits of these will, in most cases, however, be transparent to end-users.

Mobility and 5G technology

Very-high-speed user mobility, to as much as hundreds of kilometers per hour, will be supported, thus serving users on all modes of transportation. Regulatory and situation-dependent restrictions – most notably, on aircraft – however, will still apply.

Improved security

As security remains the one aspect of IT where no one is ever done, enhancements to encryption, authentication, and privacy are expected. It would not be surprising to see identity management (IDM) solutions along the lines of those now at work in many organizations available from at least a few carriers. Current IDM suppliers as well might be more than mildly interested in extending their capabilities to 5G services purchased by enterprises.

New spectrum to service 5G

It is expected that frequencies in the so-called millimeter-wave bands above 30GHz will see service in at least some 5G deployments. Both licensed and unlicensed spectrum at these frequencies is available in many parts of the world. MM wave frequencies are often appropriate to small cells since they require smaller and less obtrusive antennas, and the inherent signal directionality can multiply spectral efficiency.

The core disadvantages for MM waves are less applicability to traditional larger cells along with poor object (e.g., buildings) penetration, but such can again be advantages in terms of frequency reuse. Regardless, more spectrum is required given the throughput and capacity objectives that justify 5G development and deployment – present spectral allocations will most certainly not suffice even with the ability to aggregate smaller blocks of spectrum.

New enabling technologies

We expect to see higher-order MIMO implementations, sometimes described as “massive” with, for example, 16-64 streams, more aggressive modulation and channel coding, improved power-utilization efficiency, and related advances. Small cells will see frequent application, and the days of large cell towers may be numbered in more densely populated areas. Current trends otherwise at work in networks today, include SDN and NFV, will also see application in 5G, with much infrastructure implemented within cloud-based services.

5G will likely require no major advances in chip or manufacturing technologies, and device power consumption will likely benefit from more limited geographic range even as higher clock rates take a small toll here. Still, much work remains in terms of both technical and feasibility analysis as well as cost, but we see no showstoppers on the horizon. There is no danger of producing another WiMAX that offers marketing hype with no clear advantages over the previous generation, and the overall level of technical risk is low. Perhaps the greatest challenge is schedule slip, as the complex nature of the systems engineering that is required needs more time than many expect.

5G and IoT

5G as a wireline replacement will have to support every class of traffic and every conceivable device, from broadcast-quality video distribution to telemetry, implantable medical devices, augmented and virtual reality, and advanced interactivity and graphics – and not just for gaming. The list also includes connected and autonomous cars, remotely-piloted vehicles (drones), public safety, building and municipal automation/monitoring/control, and disaster relief. including relocatable infrastructure with moving cells and support for dynamic wireless meshing. Also in the mix are robotics and IoT devices tolerant of limited data throughput and highly-variable latency. We expect literally tens of billions of 5G devices to be deployed over the next decade or so, so the scale of both the challenge and the demand is clear.

Industry growth

Finally, carriers, operators, and equipment vendors of both infrastructure and subscriber devices simply require the deployment of new technologies with quantifiable end-user-visible benefits from time to time in order to continue to grow their businesses. New subscriber units alone cannot accomplish this goal.

In short, 5G is a business opportunity being designed and implemented to provide all of the communication capabilities and performance we expect from a wireline network. Getting to that point, given all of the requirements above, won’t be easy, quick, or inexpensive.

5G standard

3G was the last G to have a formal definition, in this case from the ITU and specifying throughput of up to 2Mbps. The definition of 4G was never formalized, and there have even been legal battles over what might be considered 4G, with a general consensus that LTE and LTE-Advanced, as specified by the Third Generation Partnership Project (3GPP), serve as an adequate minimum. 3GPP is an industry standards group consisting of major organizations and associations, with very broad support and respect across the globe. This group has been a dominant factor in defining the cellular industry itself since 3G and has driven other key advances in cellular deployments including an all-IP core, LTE, LTE-Advanced, and many more.

Given their overall leadership, we expect that the 3GPP will essentially define 5G from both marketing and operational perspectives, by the time Release 16 appears, likely in the second half of 2019. The ITU, through its IMT-2020 program within ITU-R is also hard at work here, with expected completion of their work by, oddly enough, 2020. ETSI is also active in 5G, as is one other organization taking a major role in the debate, the Next Generation Mobile Networks (NGMN) Alliance, a trade association of operators and analogous to the Wi-Fi Alliance. Their 5G White Paper is perhaps the most complete vision and working definition of 5G published to date. Regardless, some harmonization of the work of this multiplicity of efforts will clearly be required.

5G vs. LTE

As 4G ended up being defined by radio technologies, it is possible the 5G will eventually center on the same. The next-gen technology here begins with LTE-Advanced Pro, called 4.5G by some, and is initially being specified in 3GPP Release 13. Further enhancement to LTE Advanced Pro into what many are currently calling NR (new radio) is likely by Release 15. But practically, and especially from a marketing perspective, the line between 4G and 5G is already quite blurry.

Both organizational IT managers and end users will shortly notice that the marketing of “gigabit LTE” has begun. While this advance is not strictly 5G, it is likely that it will be marketed as such owing to that gigabit number. While we do expect that some end-users might experience occasional bursts of throughput above 100Mbps, gigabit LTE cannot provision the capacity required to meet expectations for regular service at such levels. Regardless, some locales will see deployments here as early as the end of this year, and new devices, including Samsung’s Galaxy S8 and perhaps even the upcoming 2017 iPhone, will include this technology. Ultimately, though, the fate of such services rests with each carrier’s plans for their deployment.

Advanced wide-area radios aren’t the only possibility; among the features mentioned for inclusion in NR is interworking with Wi-Fi. We might, however, instead suggest that contemporary Wi-Fi – 802.11ac and the 60GHz802.11ad – is already 5G technology [see previous article], with very high throughput, small cells, and essentially every other necessary 5G attribute except for OSS and operation in licensed frequencies. Hard handoff between wide-area 5G technologies and Wi-Fi could become a key 5G deployment strategy going forward, especially to augment indoor reach and capacity. We might also suggest that provisioning deterministic association (as opposed to allowing client devices to decide which AP to associate with, when to roam, etc.) might be a worthwhile area of endeavor for the Wi-Fi community.

Barriers to 5G?

While the ultimate marketplace success of 5G is all but assured, a number of issues remain. Perhaps the most important among these is the availability of spectrum sufficient to assure that the broadband promise of 5G is realized. As we noted above, we expect a significant portion of the spectrum devoted to 5G, and globally, will be in the millimeter-wave bands above 30GH, almost certainly including spectrum at 60GHz and ranging up to 70-80GHz or even higher. But how much of which specific frequencies might become available is the domain of government regulations, which vary on a national basis. In addition, the proportion of currently allocated spectrum that might be re-farmed or allocated so as to coexist with current production systems is also an open question. The further application of spectrum auctions is also a concern to those developing 5G business models, given the vast amount of money involved. And, finally, conflict of the form already being seen in the unlicensed bands between LTE and Wi-Fi demands workable and effective solutions regardless.

Other potential issues include the following:

  • Backhaul – The capacity of the interconnect between cells of any form, as well as to the remainder of a carrier network and the Internet itself, must be commensurate with the capacity provisioned to subscribers so as to avoid bottlenecks. A major increase in backhaul capacity is thus in the cards, and we expect the millimeter-wave bands to see major utilization here as well.
  • Coexistence and evolution – 3G, 4G, and 5G will need to coexist for some time, adding complexity to both carrier networks and end-user devices. The obsolescence of earlier generations is essential to improved spectral efficiency, so carriers will need to carefully plan and stage rollouts and upgrades alike.
  • Other regulatory policies – In addition to spectrum regulation, other regulations in such domains as net neutrality, the taxation of communications services, universal service, and overall national broadband policies will need to be revisited and perhaps even reconsidered altogether.
  • Pricing – Finally, we have at present no idea what form the pricing models for 5G might take. While voice, messaging, and similar narrowband services will likely remain flat-rate, the pricing of 50Mbps-plus IP services is unknown. Just as we saw unlimited data plans vanish only to reappear years later, the possibility (likelihood?) of such volatility is an element that should be part of organizational planning going forward, including with respect to service plans selected under BYOD policies.

5G availability

Note that 5G activity continues to build, with even a few field trials now underway, at least nominally. While sometimes these trials are marketed under that designation, they are not really early deployments because the underlying standards, let alone the required hardware and software, do not yet exist. We do not expect the general availability of 5G much before the 2020/2021 timeframe, and critical mass, a term we use to describe reliable availability in major population centers, not occurring before 2025. And, fear not; while 3G service should begin to fade around 2025, 4G availability should be good at least until 2030. Organizations thus have plenty of time to plan and complete the cutover to 5G, although we expect that mobile-device vendors and carriers may provide incentives for a more rapid market uptake.

Given the pervasiveness of BYOD initiatives and the fact that they will continue to be the dominant model for organizational mobile-device provisioning, most organizational IT departments will ultimately need to devote only minimal effort to the day-to-day management of end-user evolution to 5G. Most of the work here should be in updating reimbursement policies as 5G service plans gel.

But organizations should begin to consider what 5G might mean to their own internal operations. Just as 802.11ac broke the gigabit barrier and eliminated the need for wired drops to all but a few end-users, 5G may represent the final cord-cutting for everyone, everywhere. Remember – 5G is about replacement, not augmentation. And, as we expect 5G to include current-generation Wi-Fi, organizational investments in in-building networks should be little affected by the advent of 5G. We do expect at least a few carriers and operators to get into the managed-services business, however, offering one-stop shopping for both WLAN and WWAN and even some value-added services. And high-capacity wired backhaul and interconnect links will also be unaffected by 5G, at least for the foreseeable future.

As for the remainder of IT initiatives, including cloud, virtualization, and more, 5G should be transparent – just another fast link that also happens to be mobile. 5G, restating our initial thesis above, is evolutionary, not revolutionary.

Which brings us to a final point: will there ever be a 6G? Believe it or not, we doubt that such will be necessary. 5G itself will evolve over time, transparently incorporating leading-edge innovations like Massive MIMO to continue to meet the ever-growing demand for wireless connectivity. So, for now, anyway, it’s safe to conclude that all of us – vendors, carriers and operators, IT departments, and even end-users – are far enough up the wireless experience curve that the transition to 5G, despite the remarkable advance in overall capability, may very well be the smoothest cellular upgrade ever.

Craig J. Mathias is a principal with Farpoint Group, an advisory firm specializing in wireless networking and mobile computing.

Wi-Fi 6 is coming to a router near you

The Wi-Fi alliance has changed the naming scheme for Wi-Fi standards, abandoning the 802.11 designations for simpler names like Wi-Fi 6, Wi-Fi 5, Wi-Fi 4, etc., but that may gloss over some of the finer points of the old IEEE system.

Source: Jon Gold, Senior Writer, Network World

Just when we were all getting used to the IEEE 802.11 Wi-Fi nomenclature that differentiates between generations of the technology, the industry’s Wi-Fi Alliance has gone and made it simpler and more digestible for the user on the street.

As a result, starting this month what we know as 802.11ax is officially called Wi-Fi 6.

The new, vastly simplified system also means that 802.11ac is now Wi-Fi 5, and 802.11n is Wi-Fi 4. The idea, according to the Wi-Fi Alliance, is to make matching endpoint and router capabilities a simpler matter for the rank-and-file user of Wi-Fi technology.

Think of it as the unlicensed equivalent to the various Gs – 3G, 4G, 5G – that the cellular data carriers have rolled out over the years – broad descriptors of the generation of connectivity tech that it’s in place on a given device, not specific technical specifications.

What is Wi-Fi 6 good for?

The basic technology behind Wi-Fi 6, which is still known as 802.11ax on the technical side, promises major advances beyond just higher data rates, including better performance in dense radio environments and higher power efficiency.

Wi-Fi 6 is also seen as a possible communications method for internet-of-things (IoT) devices that have low power capabilities and limited battery life. Thanks to a feature called target wake time, Wi-Fi 6 IoT devices can shut down their Wi-Fi connections most of the time and connect only briefly as scheduled in order to transmit data they’ve gathered since the last time, thus extending battery life.

Farpoint Group principal and Network World contributor Craig Mathias said that, given the degree to which consumerization is the driving force even behind enterprise IT these days, the re-naming is probably a step in the right direction, but that doesn’t mean that simply labeling 802.11ax as Wi-Fi 6 tells the whole story.

“Saying, for example, that a given product is ‘Wi-Fi 6’ just specifies which generation it belongs to, and very little else,” he said. “By analogy, one can purchase a 2019 Ford Edge. But there are also SE, SEL, Titanium, and ST models, and numerous options for each of these trim levels. So saying one has a Ford Edge isn’t really very descriptive at all.”

A bigger potential issue, Mathias added, is that presenting different Wi-Fi technologies via a simple sequential naming convention can mislead users. 802.11ad and ay are 60GHz standards, with vastly different characteristics and capabilities than 2.4GHz and 5GHz systems. Simply calling them “Wi-Fi 7” makes them sound like the next generation of the same technology, not something that’s fundamentally designed to accomplish different tasks.

“A number of potential issues arise if linear numbering is taken to imply ‘better,’” he said.

The Wi-Fi Alliance says that vendors will be able to incorporate the new naming scheme in their user interfaces. So as mobile users move from access point to access point, their screens will use the new numbering system show the standard that was used to establish the current connection.

The new terminology will also be applied to the Wi-Fi Alliance’s certification program for wireless products. So, for example, starting next year if a product meets the 802.11ax standard it will receive a Wi-Fi CERTIFIED 6 designation.


‘Hologram’ lecturers to teach students at Imperial College London

By Leo Kelion, Technology desk editor
BBC News: 01 November 2018

University classes are set to be given a futuristic spin by letting lecturers appear as hologram-like apparitions beamed in from afar.

Imperial College - Hologram
Imperial College London will show off the technology at a special event later on Thursday before deploying it more widely.

It believes it will be the first academic body to do so regularly.

A similar effect has been used to animate images of Michael Jackson, Elvis Presley and other celebrities.

Imperial will initially limit its use to its Business School’s activities but expects the technology could eventually become common.

“The alternative is to use video-conferencing software but we believe these holograms have a much greater sense of presence,” Dr David Lefevre, director of Imperial’s Edtech Lab, told the BBC.

To read more, follow the link below…

Source: https://www.bbc.com/news/technology-46060381

TheJunction

Climate change: Low cost, low energy cooling system shows promise

By Matt McGrath, Environment correspondent
BBC News: 26 October 2018

Low_Energy_Cooling_System
The roof array that can cool a house with little energy use

Researchers in the US have scaled up a new low-cost system that could provide efficient cooling for homes while using very little electricity.

The team has developed a roof-top sized array, built from a highly reflective material made from glass and polymers.

In tests, the system kept water around 10C cooler than the ambient air when exposed to midday sunlight in summer.

The approach could also be scaled up to cool power stations and data centres.

The system is based around what’s termed a cooling meta-material, which is essentially an engineered film not found in nature.

Last year, researchers at CU Boulder in the US published research on the extraordinary properties of the new film, which reflects back almost all incoming light from the Sun.

Splosh! How to make a giant impact crater
Clever crows reveal window into the mind

But it also has another cooling trick that makes it quite special. If you use the film to cover water, it allows any heat in the liquid to escape into the air.

So when the heat escapes and is not replaced because the material deflects away sunlight, temperatures drop rapidly.

Now the scientists have improved the system and and built and tested a 13-sq-metre array of panels, that’s small enough to fit on most rooftops.

“You could place these panels on the roof of a single-family home and satisfy its cooling requirements,” said Dongliang Zhao, lead author of the study from CU Boulder’s Department of Mechanical Engineering.

How effective is this material?

Cooling Foil
The new material looks like aluminium foil but is slightly thicker

To read more, follow the link below…

Source: https://www.bbc.com/news/science-environment-45991225

TheJunction

How light could help superfast mobile reach even further

BBC News: 11 October 2018

_103800204_gettyimages-104462426
Internet connectivity through light waves could help 5G reach into buildings and underground

The global race towards superfast “fifth generation” mobile internet, known as 5G, is entering a key phase. The trouble is no-one knows exactly which technologies will be best for offering such a service. But one telecoms firm may just have had a light-bulb moment.

At its headquarters in Slough, O2 has installed an unusual demo. It’s a room where a wireless internet connection is provided not through wi-fi, but li-fi – a system that transmits data through light waves rather than radio waves.

The mobile operator thinks the system may help to offer 5G speeds in certain locations where getting coverage from an outdoor mobile signal is difficult.

‘Li-fi 100 times faster than wi-fi’

Harald Burchardt of pureLiFi, the firm behind the tech, says ceiling spotlights in the room have been spaced evenly so that their downward, cone-shaped beams can connect to a light-receiving dongle plugged into a tablet computer.

“We’re using the light itself,” he tells me, gesturing at the bulbs above. “These are flickering at billions of times a second, naked to the human eye.”

Li-fi can offer data speeds of up to eight gigabits per second (8Gbps) – about 400 times faster than the average broadband speed in the UK.

_103800211_o2lf-fidemo
Tablets, laptops and phones would need a special dongle to pick up the light signal

You need only walk a few steps out of the room and the signal drops. Inside, it stays ultra snappy.

Within the ceiling, the light bulbs have been connected to access points that are wired to the internet. If you didn’t know that, though, you’d simply think you had walked into a well-lit room. It’s a much more market-ready version of the technology demonstrated to the BBC four years ago.

So why is O2 considering li-fi as a potential way of offering 5G-style mobile connectivity in indoor spaces?

“Targeting indoor coverage is a real challenge,” explains Brendan O’Reilly, O2’s chief technology officer.

This is because it is harder for high-frequency, short wavelength 5G radio signals to penetrate walls and windows than 4G radio signals. Despite ostensibly being faster, the 5G signal may actually be less accessible in some places as a result.

“Li-fi could be part of a 5G solution. It provides good data rates,” says Mr O’Reilly.

“I don’t think we’ll see O2 necessarily offering to make light bulbs themselves, but as part of a solution to a connectivity problem I can see li-fi playing a role in that.”

Li-fi could extend mobile connectivity into those hard-to-reach indoor spaces. Or li-fi bulbs could replace streetlights in well-lit urban areas to provide high-speed connections to densely packed crowds of people.

Last year, Harald Haas, who coined the term “li-fi”, published a paper in which he described the technology as a game-changer for 5G, listing a number of potential applications.

It might connect “internet of things” devices dotted around a building via light, he argued, offer connectivity to driverless cars moving along roads, or bring super-fast wireless internet to devices in data centres.

And Mr O’Reilly suggests that hospitals could easily hook up healthcare devices to the local network without having to rely on over-burdened wi-fi networks or relying on potentially hazardous cables.

Prof Dimitra Simeonidou at the University of Bristol says li-fi could help in places where radio-based connectivity is challenged – such as in train tunnels.

“When you are having the train go through the tunnel there is very little space around it, so that will definitely disturb radio signals,” she explains.

Providing a seamless mobile signal to passengers on a train journey or to those using an underground rail network could be made possible with internet-enabled tunnel lighting, she says.

But li-fi is not ready to light up the 5G roll-out just yet.

“To make it work sensibly, it needs to be a bit like wi-fi, it needs to be ubiquitous,” says Prof William Webb, independent consultant and author of The 5G Myth.

“It needs to be in-built to lots and lots of devices.”

_103800334_gettyimages-688002756
Li-fi only works within the cone of light. Move beyond and you lose connectivity

For the O2 demo, a dongle was plugged into a tablet to receive the li-fi signal. But for the technology really to take off, these light-reading sensors would have to be built in to devices – a considerable obstacle.

And the most obvious drawback is that your phone won’t be able to pick up a signal if it’s in your pocket or bag. But given how much time we spend staring at our small screens, maybe this wouldn’t be such an issue.

Prof Webb believes wi-fi networks could be capable of handling demand, despite that being an occasional frustration.

“It isn’t really a pressing problem,” he says.

His scepticism is echoed by Sylvain Fabre, an analyst at market research firm Gartner. He and his colleagues have been tracking the development of li-fi products and their adoption, but they are yet to see a big impact.

“There aren’t many vendors and there are very few installations,” he tells me. “It will be hard to go to economies of scale and get prices to drop.”

But that isn’t stopping O2 and others from exploring the possibilities.

It might only take one engineer to change a light bulb – but Harald Haas and pureLiFi will need a lot more than that to change the world of wireless connectivity.

Source: https://www.bbc.com/news/business-45811959

TheJunction

Why you have (probably) already bought your last car

: 10th October 2018

_103772456_gettyimages-833538620
Driverless taxis – the transport of the future?

A growing number of tech analysts are predicting that in less than 20 years we’ll all have stopped owning cars, and, what’s more, the internal combustion engine will have been consigned to the dustbin of history.

Yes, it’s a big claim and you are right to be sceptical, but the argument that a unique convergence of new technology is poised to revolutionise personal transportation is more persuasive than you might think.

The central idea is pretty simple: Self-driving electric vehicles organised into an Uber-style network will be able to offer such cheap transport that you’ll very quickly – we’re talking perhaps a decade – decide you don’t need a car any more.

And if you’re thinking this timescale is wildly optimistic, just recall how rapidly cars replaced horses.

Take a look at this picture of 5th Avenue in New York in 1900. Can you spot the car?

_103768749_gettyimages-806339_2
5th Avenue New York in 1900

Now look at this picture from 1913. Yes, this time where’s the horse?

_103768751_georgegranthambain_loc_11659u2

In 1908 the first Model T Ford rolled off the production line; by 1930 the equestrian age was, to all intents and purposes, over – and all thanks to the disruptive power of an earlier tech innovation – the internal combustion engine.

So how will this latest transportation revolution unfold?

The driverless Uber model

First off, consider how Uber and other networked taxi companies have already changed the way we move around. In most major cities an Uber driver – or one of its rivals – is usually just a couple of minutes away, and charges less than established taxis, let’s say £10.

The company’s exponential growth is evidence of how powerful the Uber business model is.

Now take out the driver. You’ve probably cut costs by at least 50%.

_103771278_gettyimages-659266120
Uber has been experimenting with driverless cars

So if we’re trying to work out when this revolution will begin in earnest the key date will be when self-driving vehicle technology is available and – crucially – has regulatory backing.

That could well be sooner than you think. The UK has said it hopes to authorise the first fully autonomous cars as early as 2021.

And, say enthusiasts for autonomy, it will only take one city to prove the technology is safe and useful and the rest of the world will very quickly rush to catch up.

So self-driving cars have cut our £10 journey to £5.

The switch to electric

Now imagine the current mostly fossil fuel-powered taxi fleet is replaced with electric cars.

At the moment electric vehicles are more expensive than similar models with internal combustion engines, but offer significantly lower lifetime costs.

They are more reliable, for a start. The typical electric car has around 20 moving parts compared to the 2,000 or so in an internal combustion engine.

As a result electric vehicles also tend to last much longer. Most electric car manufacturers expect their vehicles to keep on going for at least 500,000 miles.

These factors aren’t that important for most consumers – after all, the average driver in England does less than 10,000 miles a year and our cars are parked 95% of the time. However, they are huge issues if you’re using a vehicle pretty much continuously, as would be the case with a self-driving taxi.

_103768754_gettyimages-905458602
The end of the road for the internal combustion engine?

Add in the low cost of recharging batteries compared to refuelling and you’ve got another dramatic reduction in costs.

And it’s worth noting that the cost of electric vehicles is likely to continue to fall, and rapidly. As they become mainstream, returns to scale will drive down costs. That’s the logic behind Tesla’s $5bn (£3.8bn) battery plant, the so-called “Gigafactory”.

How does this affect our £10 journey?

It brings another dramatic reduction. Fully autonomous electric taxi networks could offer rides at as little as 10% of current rates.

At least that’s what tech prophet Tony Seba reckons. He and his team at the think-tank RethinkX have done more than anyone else to think through how this revolution might rip through the personal transportation market.

‘Transport as a service’

We’ve now cut our £10 fare to just £1.

Mr Seba calls the idea of a robo-taxi network “transport as a service”, and estimates it could save the average American as much as $6,000 (£4,560) a year. That’s the equivalent of a 10% pay rise.

And don’t forget, when the revolution comes you won’t be behind the wheel so now you’ll be working or relaxing as you travel – another big benefit.

You still think that car parked outside your flat is worth having?

What’s more, once this new model of getting around takes hold the benefits are likely to be reinforcing. The more vehicles in the network, the better the service offered to consumers; the more miles self-driving cars do, the more efficient and safer they’ll get; the more electric vehicles manufactured, the cheaper each one will be.

_103772452_gettyimages-949026788
Don’t worry about running out of charge

Don’t worry that rural areas will be left out. A vehicle could be parked in every village waiting for your order to come.

And range anxiety – the fear that you might run out of electricity – won’t be a problem either. Should the battery run low the network will send a fully charged car to meet you so you can continue your journey.

You’ve probably seen headlines about accidents involving self-driving cars but the truth is they will be far safer than ones driven by you and me – they won’t get regulatory approval if they are not. That means tens of thousands of lives – perhaps hundreds of thousands – will be saved as accident rates plummet.

That will generate yet another cost saving for our fleets of robo-taxis. The price of insurance will tumble, while at the same time those of us who insist on continuing to drive our own vehicles will face higher charges.

Human drivers banned

According to the tech visionaries it won’t be long before the whole market tilts irreversibly away from car ownership and the trusty old internal combustion engine.

RethinkX, for example, reckons that within 10 years of self-driving cars getting regulatory approval 95% of passenger miles will be in these electric robo-taxis.

_103772448_cars2
Will cars parked outside houses soon be a thing of the past?

The logical next step will be for human beings to be banned from driving cars at all because they pose such a risk to other road users.

Take a moment to think about the wide-reaching effects this revolution will have, aside from just changing how we get around. There will be downsides: millions of car industry workers and taxi drivers will be looking for new jobs, for a start.

But think of the hundreds of billions of dollars consumers will save, and which can now be spent elsewhere in the economy.

Meanwhile, the numbers of cars will plummet. RethinkX estimates that the number of vehicles on US roads will fall from nearly 250 million to just 45 million over a 10-year period. That will free up huge amounts of space in our towns and cities.

And, please take note: I haven’t mentioned the enormous environmental benefits of converting the world’s cars to electricity.

That’s because the logic of this upheaval isn’t driven by new rules on pollution or worries about global warming but by the most powerful incentive in any economy – cold hard cash.

That said, there’s no question that a wholesale switch away from fossil fuels will slow climate change and massively reduce air pollution.

In short, let the revolution begin!

But seriously, I’ve deliberately put these arguments forcefully to prompt debate and we want to hear what you think.

Source: https://www.bbc.com/news/business-45786690

You can tweet Justin at @BBCJustinR

TheJunction

Future cars to be made from revolutionary new material

University of Surrey Press Release 1st October 2018 A new material that is as stiff as metal but flexible enough to withstand strong vibrations could transform the car manufacturing industry, say experts from the University of Surrey.
fig.1
In a paper published in Scientific Reports by Nature, scientists from Surrey joined forces with Johns Hopkins University in Baltimore and the University of California to develop a material that has high stiffness and damping. The team achieved this near impossible combination in a material by using 3D woven technical textile composite sheets, with selected unbonded fibres – allowing the inside of the material to move and absorb vibrations, while the surrounding material remains rigid. Researchers believe their new material could usher in a new wave of trains, cars, and aircrafts, allowing customers to experience little to no vibration during their travels. Dr Stefan Szyniszewski, lead author of the study and Assistant Professor of Materials and Structures at the University of Surrey, said: “The idea of a composite the resolves the paradox of stiffness and damping was thought to be impossible – yet here we are. This is an exciting development that could send shock waves through the car, train and aerospace manufacturing industries. This is a material that could make the vehicles of the near future more comfortable than ever before.” Fig. 1: (a) 3D woven (3DW) lattice material is composed of Z- (green), warp (red) and fill (blue) wires; (b) Yellow color indicates the brazing locations (at the top and bottom). (c) Cross-section of 3D woven lattice with the stiff skeleton (the brazed portion on the top and bottom) and free lattice members in the core of the structure, (d) SEM image of the brazed top face, which confirmed metallurgical bonding of the metallic lattices. Source: https://www.surrey.ac.uk/news/future-cars-be-made-revolutionary-new-material TheJunction