‘Hologram’ lecturers to teach students at Imperial College London

By Leo Kelion, Technology desk editor
BBC News: 01 November 2018

University classes are set to be given a futuristic spin by letting lecturers appear as hologram-like apparitions beamed in from afar.

Imperial College - Hologram
Imperial College London will show off the technology at a special event later on Thursday before deploying it more widely.

It believes it will be the first academic body to do so regularly.

A similar effect has been used to animate images of Michael Jackson, Elvis Presley and other celebrities.

Imperial will initially limit its use to its Business School’s activities but expects the technology could eventually become common.

“The alternative is to use video-conferencing software but we believe these holograms have a much greater sense of presence,” Dr David Lefevre, director of Imperial’s Edtech Lab, told the BBC.

To read more, follow the link below…

Source: https://www.bbc.com/news/technology-46060381

TheJunction

What is AGX Xavier?

The NVIDIA® Jetson™ AGX Xavier™ is the world’s first AI computer for autonomous machines.

Xavier-TX2i-1024x476

  • 20x performance than Jetson™ TX2
  • 512-core Volta GPU and 64 Tensor cores with discreet dual Deep Learning Accelerator (DLA) NVDLA engines
  • 4 x dual-core CPU clusters (8 NVIDIA Carmel processor cores)
  • 16GB 256-bit wide LPDDR4X memory interface
  • Module Size: 100 mm x 87 mm

 

For further specifications, please refer to the documentation available for Jetson AGX Xavier in the Jetson Download Center.

What is the difference between TX2 and AGX Xavier?

Feature Jetson™ TX2 Jetson™ AGX Xavier
GPU 256 Core Pascal @ 1.3GHz 512 Core Volta @ 1.37GHz
64 Tensor Cores
DL Accelerator (2x) NVDLA
Vision Accelerator (2x) 7-way VLIW Processor
CPU 6 core Denver and A57 @ 2GHz
(2x) 2MB L2
8 core Carmel ARM CPU @ 2.26GHz
(4x) 2MB L2 + 4MB L3
Memory 8GB 128 bit LPDDR4
58.4 GB/s
16GB 256-bit LPDDR4x @ 2133MHz
137 GB/s
Storage 32GB eMMC 32GB eMMC
Video Encode (2x) 4K @30
HEVC
(4x) 4Kp60 / (8x) 4Kp30
HEVC
Video Decode (2x) 4K @30
12 bit support
(2x) 8Kp30 / (6x) 4Kp60
12 bit support
Camera 12 lanes MIPI CSI-2
D-PHY 1.2 30Gbps
16 lanes MIPI CSI-2 | 8 lanes SLVS-EC
D-PHY 40Gbps / C-PHY 109Gbps
PCI Express 5 lanes PCIe Gen 2
1×4 + 1×1 | 2×1 + 1×4
16 lanes PCIe Gen 4
1×8 + 1×4 + 1×2 + 2×1
Mechanical 50mm x 87mm
400 pin connector
100mm x 87mm
699 pin connector
Power 7.5W / 15W 10W / 15W / 30W

TheJunction

Climate change: Low cost, low energy cooling system shows promise

By Matt McGrath, Environment correspondent
BBC News: 26 October 2018
Low_Energy_Cooling_System
The roof array that can cool a house with little energy use

Researchers in the US have scaled up a new low-cost system that could provide efficient cooling for homes while using very little electricity.

The team has developed a roof-top sized array, built from a highly reflective material made from glass and polymers.

In tests, the system kept water around 10C cooler than the ambient air when exposed to midday sunlight in summer.

The approach could also be scaled up to cool power stations and data centres.

The system is based around what’s termed a cooling meta-material, which is essentially an engineered film not found in nature.

Last year, researchers at CU Boulder in the US published research on the extraordinary properties of the new film, which reflects back almost all incoming light from the Sun.

Splosh! How to make a giant impact crater
Clever crows reveal window into the mind

But it also has another cooling trick that makes it quite special. If you use the film to cover water, it allows any heat in the liquid to escape into the air.

So when the heat escapes and is not replaced because the material deflects away sunlight, temperatures drop rapidly.

Now the scientists have improved the system and and built and tested a 13-sq-metre array of panels, that’s small enough to fit on most rooftops.

“You could place these panels on the roof of a single-family home and satisfy its cooling requirements,” said Dongliang Zhao, lead author of the study from CU Boulder’s Department of Mechanical Engineering.

How effective is this material?

Cooling Foil
The new material looks like aluminium foil but is slightly thicker

To read more, follow the link below…

Source: https://www.bbc.com/news/science-environment-45991225

TheJunction

Perle releases 39 New Modular Console Servers for In-Band and Out-of-Band-Management

Support for up to 50 USB and RS232 Console Ports, redundant copper and fiber Ethernet network access, WiFi network access and a V.92 modem connection

The new modular IOLAN SCG Console Servers offer multiple secure remote access methods to the RS232 RJ45 or USB console management port of every device on the network.

IOLAN SCG Console Server
IOLAN SCG Console Server
  • Dual Network Connection with 10/100/1000Base-T Copper and 100/1000Base-X Fiber SFP Ports
  • Built in WLAN (Wi-Fi ®) dual band radio supporting IEEE 802.11 a,b,g,n,i @2.4Ghz/5Ghz
  • Built-in in v.92 modem for out of band access

The modular design of the IOAN SCG allows the user to swap, upgrade and scale to any “mix-and-match” combination of 16-port USB 3.0 or RS-232 RJ45 interface module cards.

With advanced network security features, recognized authentication schemes and standard data encryption tools, IT administrators can feel confident that network data transmissions, and all access to the console admin ports on IT equipment, is secure.

Find out more… https://www.perle.com/products/console-server.shtml

TheJunction

How light could help superfast mobile reach even further

BBC News: 11 October 2018
_103800204_gettyimages-104462426
Internet connectivity through light waves could help 5G reach into buildings and underground

The global race towards superfast “fifth generation” mobile internet, known as 5G, is entering a key phase. The trouble is no-one knows exactly which technologies will be best for offering such a service. But one telecoms firm may just have had a light-bulb moment.

At its headquarters in Slough, O2 has installed an unusual demo. It’s a room where a wireless internet connection is provided not through wi-fi, but li-fi – a system that transmits data through light waves rather than radio waves.

The mobile operator thinks the system may help to offer 5G speeds in certain locations where getting coverage from an outdoor mobile signal is difficult.

‘Li-fi 100 times faster than wi-fi’

Harald Burchardt of pureLiFi, the firm behind the tech, says ceiling spotlights in the room have been spaced evenly so that their downward, cone-shaped beams can connect to a light-receiving dongle plugged into a tablet computer.

“We’re using the light itself,” he tells me, gesturing at the bulbs above. “These are flickering at billions of times a second, naked to the human eye.”

Li-fi can offer data speeds of up to eight gigabits per second (8Gbps) – about 400 times faster than the average broadband speed in the UK.

_103800211_o2lf-fidemo
Tablets, laptops and phones would need a special dongle to pick up the light signal

You need only walk a few steps out of the room and the signal drops. Inside, it stays ultra snappy.

Within the ceiling, the light bulbs have been connected to access points that are wired to the internet. If you didn’t know that, though, you’d simply think you had walked into a well-lit room. It’s a much more market-ready version of the technology demonstrated to the BBC four years ago.

So why is O2 considering li-fi as a potential way of offering 5G-style mobile connectivity in indoor spaces?

“Targeting indoor coverage is a real challenge,” explains Brendan O’Reilly, O2’s chief technology officer.

This is because it is harder for high-frequency, short wavelength 5G radio signals to penetrate walls and windows than 4G radio signals. Despite ostensibly being faster, the 5G signal may actually be less accessible in some places as a result.

“Li-fi could be part of a 5G solution. It provides good data rates,” says Mr O’Reilly.

“I don’t think we’ll see O2 necessarily offering to make light bulbs themselves, but as part of a solution to a connectivity problem I can see li-fi playing a role in that.”

Li-fi could extend mobile connectivity into those hard-to-reach indoor spaces. Or li-fi bulbs could replace streetlights in well-lit urban areas to provide high-speed connections to densely packed crowds of people.

Last year, Harald Haas, who coined the term “li-fi”, published a paper in which he described the technology as a game-changer for 5G, listing a number of potential applications.

It might connect “internet of things” devices dotted around a building via light, he argued, offer connectivity to driverless cars moving along roads, or bring super-fast wireless internet to devices in data centres.

And Mr O’Reilly suggests that hospitals could easily hook up healthcare devices to the local network without having to rely on over-burdened wi-fi networks or relying on potentially hazardous cables.

Prof Dimitra Simeonidou at the University of Bristol says li-fi could help in places where radio-based connectivity is challenged – such as in train tunnels.

“When you are having the train go through the tunnel there is very little space around it, so that will definitely disturb radio signals,” she explains.

Providing a seamless mobile signal to passengers on a train journey or to those using an underground rail network could be made possible with internet-enabled tunnel lighting, she says.

But li-fi is not ready to light up the 5G roll-out just yet.

“To make it work sensibly, it needs to be a bit like wi-fi, it needs to be ubiquitous,” says Prof William Webb, independent consultant and author of The 5G Myth.

“It needs to be in-built to lots and lots of devices.”

_103800334_gettyimages-688002756
Li-fi only works within the cone of light. Move beyond and you lose connectivity

For the O2 demo, a dongle was plugged into a tablet to receive the li-fi signal. But for the technology really to take off, these light-reading sensors would have to be built in to devices – a considerable obstacle.

And the most obvious drawback is that your phone won’t be able to pick up a signal if it’s in your pocket or bag. But given how much time we spend staring at our small screens, maybe this wouldn’t be such an issue.

Prof Webb believes wi-fi networks could be capable of handling demand, despite that being an occasional frustration.

“It isn’t really a pressing problem,” he says.

His scepticism is echoed by Sylvain Fabre, an analyst at market research firm Gartner. He and his colleagues have been tracking the development of li-fi products and their adoption, but they are yet to see a big impact.

“There aren’t many vendors and there are very few installations,” he tells me. “It will be hard to go to economies of scale and get prices to drop.”

But that isn’t stopping O2 and others from exploring the possibilities.

It might only take one engineer to change a light bulb – but Harald Haas and pureLiFi will need a lot more than that to change the world of wireless connectivity.

Source: https://www.bbc.com/news/business-45811959

TheJunction

Why you have (probably) already bought your last car

: 10th October 2018
_103772456_gettyimages-833538620
Driverless taxis – the transport of the future?

A growing number of tech analysts are predicting that in less than 20 years we’ll all have stopped owning cars, and, what’s more, the internal combustion engine will have been consigned to the dustbin of history.

Yes, it’s a big claim and you are right to be sceptical, but the argument that a unique convergence of new technology is poised to revolutionise personal transportation is more persuasive than you might think.

The central idea is pretty simple: Self-driving electric vehicles organised into an Uber-style network will be able to offer such cheap transport that you’ll very quickly – we’re talking perhaps a decade – decide you don’t need a car any more.

And if you’re thinking this timescale is wildly optimistic, just recall how rapidly cars replaced horses.

Take a look at this picture of 5th Avenue in New York in 1900. Can you spot the car?

_103768749_gettyimages-806339_2
5th Avenue New York in 1900

Now look at this picture from 1913. Yes, this time where’s the horse?

_103768751_georgegranthambain_loc_11659u2

In 1908 the first Model T Ford rolled off the production line; by 1930 the equestrian age was, to all intents and purposes, over – and all thanks to the disruptive power of an earlier tech innovation – the internal combustion engine.

So how will this latest transportation revolution unfold?

The driverless Uber model

First off, consider how Uber and other networked taxi companies have already changed the way we move around. In most major cities an Uber driver – or one of its rivals – is usually just a couple of minutes away, and charges less than established taxis, let’s say £10.

The company’s exponential growth is evidence of how powerful the Uber business model is.

Now take out the driver. You’ve probably cut costs by at least 50%.

_103771278_gettyimages-659266120
Uber has been experimenting with driverless cars

So if we’re trying to work out when this revolution will begin in earnest the key date will be when self-driving vehicle technology is available and – crucially – has regulatory backing.

That could well be sooner than you think. The UK has said it hopes to authorise the first fully autonomous cars as early as 2021.

And, say enthusiasts for autonomy, it will only take one city to prove the technology is safe and useful and the rest of the world will very quickly rush to catch up.

So self-driving cars have cut our £10 journey to £5.

The switch to electric

Now imagine the current mostly fossil fuel-powered taxi fleet is replaced with electric cars.

At the moment electric vehicles are more expensive than similar models with internal combustion engines, but offer significantly lower lifetime costs.

They are more reliable, for a start. The typical electric car has around 20 moving parts compared to the 2,000 or so in an internal combustion engine.

As a result electric vehicles also tend to last much longer. Most electric car manufacturers expect their vehicles to keep on going for at least 500,000 miles.

These factors aren’t that important for most consumers – after all, the average driver in England does less than 10,000 miles a year and our cars are parked 95% of the time. However, they are huge issues if you’re using a vehicle pretty much continuously, as would be the case with a self-driving taxi.

_103768754_gettyimages-905458602
The end of the road for the internal combustion engine?

Add in the low cost of recharging batteries compared to refuelling and you’ve got another dramatic reduction in costs.

And it’s worth noting that the cost of electric vehicles is likely to continue to fall, and rapidly. As they become mainstream, returns to scale will drive down costs. That’s the logic behind Tesla’s $5bn (£3.8bn) battery plant, the so-called “Gigafactory”.

How does this affect our £10 journey?

It brings another dramatic reduction. Fully autonomous electric taxi networks could offer rides at as little as 10% of current rates.

At least that’s what tech prophet Tony Seba reckons. He and his team at the think-tank RethinkX have done more than anyone else to think through how this revolution might rip through the personal transportation market.

‘Transport as a service’

We’ve now cut our £10 fare to just £1.

Mr Seba calls the idea of a robo-taxi network “transport as a service”, and estimates it could save the average American as much as $6,000 (£4,560) a year. That’s the equivalent of a 10% pay rise.

And don’t forget, when the revolution comes you won’t be behind the wheel so now you’ll be working or relaxing as you travel – another big benefit.

You still think that car parked outside your flat is worth having?

What’s more, once this new model of getting around takes hold the benefits are likely to be reinforcing. The more vehicles in the network, the better the service offered to consumers; the more miles self-driving cars do, the more efficient and safer they’ll get; the more electric vehicles manufactured, the cheaper each one will be.

_103772452_gettyimages-949026788
Don’t worry about running out of charge

Don’t worry that rural areas will be left out. A vehicle could be parked in every village waiting for your order to come.

And range anxiety – the fear that you might run out of electricity – won’t be a problem either. Should the battery run low the network will send a fully charged car to meet you so you can continue your journey.

You’ve probably seen headlines about accidents involving self-driving cars but the truth is they will be far safer than ones driven by you and me – they won’t get regulatory approval if they are not. That means tens of thousands of lives – perhaps hundreds of thousands – will be saved as accident rates plummet.

That will generate yet another cost saving for our fleets of robo-taxis. The price of insurance will tumble, while at the same time those of us who insist on continuing to drive our own vehicles will face higher charges.

Human drivers banned

According to the tech visionaries it won’t be long before the whole market tilts irreversibly away from car ownership and the trusty old internal combustion engine.

RethinkX, for example, reckons that within 10 years of self-driving cars getting regulatory approval 95% of passenger miles will be in these electric robo-taxis.

_103772448_cars2
Will cars parked outside houses soon be a thing of the past?

The logical next step will be for human beings to be banned from driving cars at all because they pose such a risk to other road users.

Take a moment to think about the wide-reaching effects this revolution will have, aside from just changing how we get around. There will be downsides: millions of car industry workers and taxi drivers will be looking for new jobs, for a start.

But think of the hundreds of billions of dollars consumers will save, and which can now be spent elsewhere in the economy.

Meanwhile, the numbers of cars will plummet. RethinkX estimates that the number of vehicles on US roads will fall from nearly 250 million to just 45 million over a 10-year period. That will free up huge amounts of space in our towns and cities.

And, please take note: I haven’t mentioned the enormous environmental benefits of converting the world’s cars to electricity.

That’s because the logic of this upheaval isn’t driven by new rules on pollution or worries about global warming but by the most powerful incentive in any economy – cold hard cash.

That said, there’s no question that a wholesale switch away from fossil fuels will slow climate change and massively reduce air pollution.

In short, let the revolution begin!

But seriously, I’ve deliberately put these arguments forcefully to prompt debate and we want to hear what you think.

Source: https://www.bbc.com/news/business-45786690

You can tweet Justin at @BBCJustinR

TheJunction

Connect Tech releases new Carrier and Adapter for NVIDIA Jetson AGX Xavier

Mimic

NVIDIA® Jetson™ AGX Xavier™ to TX2/TX1 Adapter

The Mimic Adapter from Connect Tech allows the NVIDIA Jetson AGX Xavier module to be installed onto an NVIDIA Jetson TX2/TX2i/TX1 carrier.

Mimic – P/N AGX001
Mimic – P/N AGX001
  • Install NVIDIA® Jetson™ AGX Xavier™ on any NVIDIA® Jetson™ TX2/TX2i/TX1 Carrier Board
  • Easily compare performance between TX2 and AGX Xavier on your current hardware platform
  • Wide range of Xavier interfaces passed to TX2/TX2i/TX1 carrier
  • Dimensions: 92mm x 105mm

 

 

 

 

The Mimic Adapter from Connect Tech allows the NVIDIA Jetson AGX Xavier module to be installed onto an NVIDIA Jetson TX2/TX2i/TX1 carrier. The Mimic Adapter is ideal for NVIDIA Jetson users who want to easily compare performance or upgrade their existing TX2/TX2i/TX1 designs to the new Jetson Xavier.

This small form factor adapter solution integrates easily onto any existing carrier board in Connect Tech’s Jetson TX2/TX2i/TX1 product line, as well as any custom platform. Enables a giant leap forward in capabilities for autonomous machines and edge devices.

Visit Product Page

Rogue

NVIDIA® Jetson™ AGX Xavier™ to TX2/TX1 Adapter

Rogue Carrier for NVIDIA® Jetson™ AGX Xavier™ is a commercially deployable, full featured carrier, just slightly smaller than the Xavier module at 92mm x 105mm.

Rogue - P/N AGX101
Rogue – P/N AGX101
  • Commercially deployable NVIDIA® Jetson™ AGX Xavier™ platform
  • 6x 2-lane or 4x 4-lane MIPI CSI Camera Inputs
  • 2x NVMe M.2 Key M Slots, 3x USB 3.1, 2x GbE
  • Wide input power range 9-19V DC
  • Dimensions: 92mm x 105mm

 

 

 

 

Connect Tech’s Rogue Carrier for NVIDIA Jetson AGX Xavier is a commercially deployable, full featured carrier coming in just slightly smaller than the Xavier module at 92mm x 105mm. The Rogue Carrier provides access to the impressive list of latest generation interfaces on the Xavier while adding additional interfaces of 3x USB 3.1, 2x GbE, 2x HDMI and locking Mini-Fit Jr. power input connector. Rugged camera add-on expansion boards will also be available for use with the Rogue to interface directly with the Xavier high density MIPI CSI interfaces.

The NVIDIA Jetson AGX Xavier has an impressive 512-core Volta GPU and 64 Tensor cores with discreet dual Deep Learning Accelerator (DLA) NVDLA engines. The platform offers 20x the performance and 10x the power efficiency of the Jetson TX2. The new module supports an increase in bandwidth, performance, and introduces USB 3.1 and PCIe Gen 4.0.

Visit Product Page

TheJunction